Geographic Knowledge Discovery: towards Mobility Data Analysis

Fosca Giannotti,

KDD Lab Pisa, Italy

Knowledge Discovery & Data Mining Lab

ISTI/CNR – Dipartimento di Informatica/ University of Pisa

http://www-kdd.isti.cnr.it

Geographic Privacy-aware Knowledge Discovery and Delivery

GeoPKDD

http://www.geopkdd.eu

A European FP7 project

Geographic Privacy-aware

Knowledge Discovery and Delivery

Technologies

The Wireless Network

The pervasiveness of mobile and ubiquitous technologies is increasing day after day

- GSM wireless phone networks
 - 1.5 billions in 2005, still increasing at a high speed
 - Italy: # mobile phones ≈ # inhabitants
- GPS and Galileo positioning systems
- Wi-Fi and Wi-Max wireless networks
- RFID's and sensor networks

Information Societ

- positioning accuracy
 - Iocation technologies capable of providing increasingly better estimate of user location

Which new opportunities?

- Location based services:
 - A certain service that is offered to the users based on their locations
 - Mobility data analysis:
 - Discovering knowledge from the digital traces of our mobile activity to support decision making in mobility related issues.

Location-based Services: Then

Information Society

Limited to fixed traffic signs

Location-based Services: Now

Tremation Society tion-based traffic reports:

- **Range query:** How many cars in the free way
- Shortest path query: What is the estimated time travel to reach my destination

- Location-based store finder:
 - Range query: What are the restaurants within five miles of my location
 - Nearest-neighbor query: Where is my nearest fast (junk) food restaurant

ocation-based advertisement:

Range query: Send E-coupons to all customers within five miles of my store

Mobility data analysis

- How people move around in the town
 - During the day, during the week, etc.

Information Society Technologies

- Are there typical movement behaviours?
 - Are there typical movement behaviours in a certain area at a certain time?
 - How frequently people access the network?
 - How are people movement habits changing in this area in last decade-year-month-day?
 - Are there relations between movements of two areas?
 - Are there periodic movements?

The representation of Napoleon's Russian campaign of 1812 produced by Charles Joseph Minard in

1861

Real-time density estimation in urban areas

The senseable project: http://senseable.mit.edu/grazrealtime/

GeoPKDD general goal

Information Society

- theory, techniques and systems for geographic knowledge discovery and delivery,
- based on new automated privacypreserving methods for extracting userconsumable forms of knowledge from large amounts of raw data referenced in space and in time.

From movement data to

.**M**í

Mining Trajectories: Clustering

Group together similar trajectories

Information Society Technologies

S

For each group produce a summary

Trajectory Clustering

Information Society Technologies

What is a trajectory pattern?

- Information Society Technologies
- A trajectory pattern is a sequence of spatial regions that, on the basis of the source trajectory data, emerge as frequently visited in the order specified by the sequence;
- in addition, the transition between two consecutive regions in such a sequence is annotated with a **typical travel time** that, again, emerges from the input trajectories.

Visualizing T-patterns Example

Visualizing T-patterns Example

......

Mining Trajectories: classification

- Extract behaviour rules from history
- Use them to predict behaviour of future users

The GeoPKDD impact

Information Society Technologies

- Improving decision-making in mobility-related issues:
 - Planning traffic and public mobility systems in metropolitan areas;
 - Planning physical communication networks
 - Localizing new services in our towns
 - Forecasting traffic-related phenomena
 - Organizing logistics systems
 - Avoid repeating mistakes
 - Timely detecting changes.

We are looking for real case to experiment on:

Application Demonstrators

- Amusement park Amsterdam
- Brasilian Governamental Trasportation Management
- GPS data from trucks in Athens
- Comune di Milano?

Information Society Technologies

- We are looking for case studies:
 - data sets, cartography and problems. The project will apply the mehods for free!
 - Is there any public administration interested in experimenting on their data?

We have a telecom. operator within the consortium, others may be involved.

Other experiments may be interesting: GPS data from car, or trucks

Why emphasis on privacy?

- More, better data are gathered, more vulnerability from linkage
 - On the other hand, more and new data bring new opportunities
 - Public utility, new markets/paradigms, new services
- Need to maintain privacy without giving up

Need to obtain social acceptance through demonstrably trustworthy solutions

Privacy in Mobility Data and

- Trusted/secure storage/Management of Mobility Data
- Privacy in Location Based Services:
 - the right of a user to receive a service without revealing his/her identity
 - Trade-off between quality of service and privacy protection

Privacy and Anonymity in Mobility Data Analysis

Trade-off between privacy protection and analysis opportunities

Privacy in GeoPKDD

Information Society

- How to design Data Analysis methods that, by construction, meet the the privacy constraints?
- How to develop trustable data mining technology capable of producing
 - provably/measurably privacy-preserving patterns
 - which may be safely distributed

Scientific Privacy Issues in GeoPKDD Is there any specific challenge/risk/opportunity in the context of ST data?

- New threats from traces analysis: learning who you are from where you have been (Malin et al 2003)
- Space and Time in a trajectory can act as quasiidentifiers (Bettini and Jajodia 2005)

How to formalize privacy measures over Spatio-Temporal data and Spatio-Temporal patterns?

E.g., anonimity threshold on clusters of individual trajectories

GeoPKDD Privacy Observatory

Privacy cannot be achieved by technology alone

- it's a combined social, ethical, legal and technological matter.
- The GeoPKDD Observatory interacts with stakeholders in privacy issues. Activities:
 - create and maintain relationships with European and national authorities for data protection and other privacy related organizations,
 - implement regulations into KDD methods and tools,
 - provide ideas for revisions of regulations themselves by means of novel privacy preserving technologies.

http://www.geopkdd.eu/pro

Fight collaboration with KDubiq's WG5

The GeoPKDD boo

Information Society Technologies

> Fosca Giannotti and Dino Pedreschi (Eds.)

Mobility, Privacy, and Data Mining.

Springer, Dec. 2007.

Fosca Giannotti Dino Pedreschi (Eds.)

Mobility, Data Mining and Privacy

Geographic Knowledge Discovery

